1 stepped pressure equilibrium code : sc00ac

- 1. Enforces spectral condensation constraint.
- 2. The representation of a given toroidal surface by Fourier harmonics is not unique. Any Fourier representation implies a particular angle parametrization, and different choices of angles results in a different Fourier representation. This freedom may be exploited to obtain a preferred angle parameterization.
- 3. A given toroidal surface may be described by $R(\theta,\zeta) = \sum_i R_i \cos \alpha_i$ and $Z(\theta,\zeta) = \sum_i Z_i \sin \alpha_i$, where $\alpha_i \equiv m_i \theta n_i \zeta$. Intuitively, better numerical accuracy will be obtained at a given Fourier resolution the angle parameterization can be adjusted to condense the Fourier spectrum. Consider the spectral width,

$$M = \frac{1}{2} \sum_{i} c_i (R_i^2 + Z_i^2), \tag{1}$$

where c_i are constants, e.g. $c_i = m_i^p + n_i^q$ for integers p and q. As the angle parameterization is defined by the Fourier representation (and vice versa), the task is to vary the R_i and Z_i in order to minimize M;

4. The variation of the R_i and Z_i must be restricted by the constraint that the surface geometry does not change (the geometry of the surfaces will be adjusted in order to satisfy force balance). To minimize M we restrict attention to tangential variations of the form

$$\delta R = R_{\theta} \, \delta u, \tag{2}$$

$$\delta Z = Z_{\theta} \, \delta u, \tag{3}$$

where δu is an arbitrary function.

5. The variation in the Fourier harmonics is given

$$\delta R_i = \oint d\theta d\zeta \ R_\theta \ \delta u \cos \alpha_i, \tag{4}$$

$$\delta Z_i = \oint d\theta d\zeta \ Z_\theta \ \delta u \sin \alpha_i. \tag{5}$$

6. The first variation in M is given

$$\delta M = \oint d\theta d\zeta \ (R_{\theta}X + Z_{\theta}Y) \,\delta u, \tag{6}$$

where $X \equiv \sum_i c_i R_i \cos \alpha_i$ and $Y \equiv \sum_i c_i Z_i \sin \alpha_i$. The Euler-Lagrange equation for the minimization of the spectral width, M, with respect to arbitrary variations, δu , is $I \equiv R_{\theta}X + Z_{\theta}Y = 0$.

7. The condition $I \equiv R_{\theta}X + Z_{\theta}Y = 0$ allows R to be expressed as a function of Z. Expanding the Fourier summation, we find

$$I = \sum_{j,k} [(-m_j)R_j \sin \alpha_j \ c_k R_k \cos \alpha_k + (+m_j)Z_j \cos \alpha_j \ c_k Z_k \sin \alpha_k]$$
 (7)

$$= \sum_{j,k}^{j,k} \frac{m_j c_k}{2} \left\{ -R_j R_k \left[\sin(\alpha_j - \alpha_k) + \sin(\alpha_j + \alpha_k) \right] + Z_j Z_k \left[\sin(\alpha_k - \alpha_j) + \sin(\alpha_k + \alpha_j) \right] \right\}. \tag{8}$$

8. The R_j may be determined (numerically) by setting the Fourier harmonics, I_i , to zero, where $I = \sum_i I_i \sin \alpha_i$ and the Z_j are assumed given.

1.0.1 Some double angle formulae for convenience

1.

$$2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos(\alpha + \beta), \tag{9}$$

$$2 \sin \alpha \cos \beta = \sin(\alpha - \beta) + \sin(\alpha + \beta), \tag{10}$$

$$2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta),\tag{11}$$

sc00ac.h last modified on 2012-05-08;